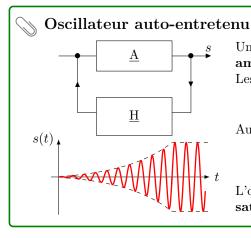


FICHE SYNTHÈSE - ÉLECTRONIQUE E1 - ÉLECTRONIQUE

Objectifs du programme

Les capacités à maîtriser sont


- ▶ Mettre en œuvre un oscillateur quasi- sinusoïdal et analyser les spectres des signaux générés.
- ▷ Expliquer l'influence de la fréquence d'échantillonnage.
- $ightharpoonup Utiliser\ la\ condition\ de\ Nyquist-Shannon.$
- ▶ Mettre en évidence le phénomène de repliement de spectre au moyen d'un oscilloscope numérique ou d'une acquisition numérique.
- ▶ Mettre en œuvre un protocole de détection synchrone.

Plan

- I Oscillateur quasi-sinusoïdal
 - I.1 Principe général
 - ${f I.2}$ Exemple de l'oscillateur électronique de Wien
 - a) Filtre de Wien
 - b) Amplificateur
 - c) conditions d'oscillation

- II Acquisition numérique d'un signal
 - II.1 Échantillonnage
 - a) Cas d'un signal sinusoïdal
 - b) Cas d'un signal complexe
 - II.2 Condition de Nyquist-Shannon
 - II.3 Conséquences
- III Détection synchrone

Synthèse

Un oscillateur auto-entretenu est un système bouclé composé d'un amplificateur et d'un élément sélectif en fréquence (filtre). Les conditions d'oscillateur à la pulsation $\omega_{\rm osc}$ se résument par

$$\underline{\mathbf{A}}(\omega_{\mathrm{osc}})\underline{\mathbf{H}}(\omega_{\mathrm{osc}}) = 1$$

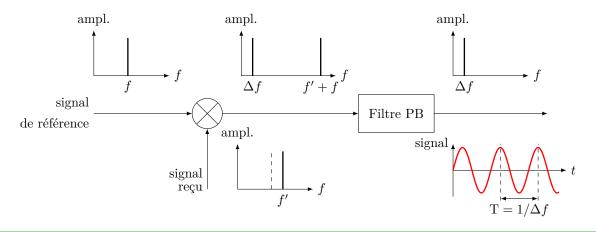
Autrement dit,

- \triangleright condition d'accord de phase : $\varphi_{\rm A}(\omega_{\rm osc}) + \varphi_{\rm H}(\omega_{\rm osc}) = 0 [2\pi]$;
- \triangleright condition gain/pertes : $|\underline{\mathbf{A}}(\omega_{\mathrm{osc}})| |\underline{\mathbf{H}}(\omega_{\mathrm{osc}})| = 1$.

L'oscillation en sortie de l'oscillateur démarre exponentiellement puis sature à cause des non-linéarités du système.

Échantillonnage d'un signal - condition de Nyquist-Shannon

L'acquisition numérique d'un signal nécessite son **échantillonnage** avec une **période d'échantillonnage** T_{ech} . Le spectre du signal d'origine peut être obtenu à partir du signal échantillonné en utilisant un filtrage passe-bas si la **condition de Nyquist-Shannon** est vérifiée, c'est-à-dire si


$$\frac{1}{\rm T_{ech}} = f_{\rm ech} > 2 f_{\rm max}$$

où $f_{\rm max}$ est l'extension spectrale du signal d'origine et $f_{\rm ech}$ est la **fréquence d'échantillonnage**.

Détection synchrone

La détection synchrone est une méthode de traitement du signal consistant à multiplier un signal reçu de fréquence f' par un signal référence de fréquence f proche de f' afin d'en obtenir après filtrage passe-bas un signal dont la fréquence est $\Delta f = |f' - f|$. Ceci permet de mesurer directement la différence de fréquence Δf .

Questions de cours et démonstrations

- \triangleright Quelles sont les conditions pour qu'un système bouclé constitué d'un amplificateur de fonction de transfert A et d'un filtre de fonction de transfert H oscille à la pulsation $\omega_{\rm osc}$?
- ▷ On utilise le modèle de l'ALI idéal dans le cadre du cours. Rappeler brièvement les conséquences de cette simplification dans le domaine linéaire.
- \triangleright Représenter le démarrage des oscillations d'un oscillateur auto-entretenu (comme le montage de Wien) lorsque le produit $\underline{A}(\omega_{osc})\underline{H}(\omega_{osc})$ est très légèrement supérieur à 1 et expliquer les différents domaines.
- ▷ Que peut-on dire du spectre d'un signal délivré par un oscillateur auto-entretenu lorsque le $\underline{A}(\omega_{\rm osc})\underline{H}(\omega_{\rm osc})$ est égale à 1? De même, lorsque $\underline{A}(\omega_{\rm osc})\underline{H}(\omega_{\rm osc}) \gtrsim 1$.
- \triangleright Dans le cas d'un signal s(t) sinusoïdal de fréquence f échantillonné à la fréquence $f_{\rm ech}=3f$, représenter l'allure du spectre du signal échantillonné.
- \triangleright Soit un signal s(t) dont le spectre s'étend sur l'intervalle $[0; f_{\max}]$. Représenter le spectre du signal échantillonné à la fréquence f_{ech} si $f_{\text{ech}} = 4f_{\max}$. Faire de même si $f_{\text{ech}} = 1,5f_{\max}$.
- ▷ Expliquer le fonctionnement de la détection synchrone en s'appuyant sur un schéma récapitulatif des étapes.